Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 680
Filtrar
1.
Allergol Immunopathol (Madr) ; 52(2): 3-9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38459884

RESUMO

OBJECTIVE: To detect the expression of RING finger protein 135 (RNF135) in lung adenocarcinoma tissues and explore its role in the progression of lung adenocarcinoma. METHODS: Bioinformation analysis, quantitative polymerase chain reaction, and immunoblotting technique discovered the expression of RNF135 in lung adenocarcinoma tissues. Cell counting kit-8 and colony formation, immunostaining, and immunoblot assays examined the effects of RNF135 on cell growth and autophagy. Co-immunoprecipitation (Co-IP), immunostaining, and immuoblotting were conducted to confirm the mechanism. RESULTS: RNF135 was highly expressed in lung adenocarcinoma. In addition, RNF135 promoted lung adenocarcinoma cell growth. Further, data confirmed that RNF135 promoted autophagy in lung adenocarcinoma cells. Mechanically, RNF135 directly interacted with Unc-51-like autophagy activating kinase 1 (ULK1) to promote its phosphorylation level. CONCLUSION: RNF135 promoted cell growth and autophagy in lung adenocarcinoma by promoting the phosphorylation of ULK1.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Ubiquitina-Proteína Ligases , Humanos , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neoplasias Pulmonares/patologia , Fosforilação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/farmacologia
2.
Dig Liver Dis ; 56(1): 187-197, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37244789

RESUMO

BACKGROUND: Ventricular zone-expressed PH domain-containing protein homologue 1 (VEPH1) is a recently discovered intracellular adaptor protein that plays an important role in human development. It has been reported that VEPH1 is closely related to the process of cellular malignancy, but its role in gastric cancer has not been elucidated. This study investigated the expression and function of VEPH1 in human gastric cancer (GC). METHODS: We performed qRT‒PCR, Western blotting, and immunostaining assays in GC tissue samples to evaluate VEPH1 expression. Functional experiments were used to measure the malignancy of GC cells. A subcutaneous tumorigenesis model and peritoneal graft tumour model were established in BALB/c mice to determine tumour growth and metastasis in vivo. RESULTS: VEPH1 expression is decreased in GC and correlates with the overall survival rates of GC patients. VEPH1 inhibits GC cell proliferation, migration, and invasion in vitro and suppresses tumour growth and metastasis in vivo. VEPH1 regulates the function of GC cells by inhibiting the Hippo-YAP signalling pathway, and YAP/TAZ inhibitor-1 treatment reverses the VEPH1 knockdown-mediated increase in the proliferation, migration and invasion of GC cells in vitro. Loss of VEPH1 is associated with increased YAP activity and accelerated epithelial-mesenchymal transition (EMT) in GC. CONCLUSION: VEPH1 inhibited GC cell proliferation, migration, and invasion in vitro and in vivo and exerted its antitumour effects by inhibiting the Hippo-YAP signalling pathway and EMT process in GC.


Assuntos
Transdução de Sinais , Neoplasias Gástricas , Animais , Camundongos , Humanos , Neoplasias Gástricas/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia
3.
Part Fibre Toxicol ; 20(1): 44, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993864

RESUMO

BACKGROUND: Microplastics and nanoplastics (MNPs) are emerging environmental contaminants detected in human samples, and have raised concerns regarding their potential risks to human health, particularly neurotoxicity. This study aimed to investigate the deleterious effects of polystyrene nanoplastics (PS-NPs, 50 nm) and understand their mechanisms in inducing Parkinson's disease (PD)-like neurodegeneration, along with exploring preventive strategies. METHODS: Following exposure to PS-NPs (0.5-500 µg/mL), we assessed cytotoxicity, mitochondrial integrity, ATP levels, and mitochondrial respiration in dopaminergic-differentiated SH-SY5Y cells. Molecular docking and dynamic simulations explored PS-NPs' interactions with mitochondrial complexes. We further probed mitophagy's pivotal role in PS-NP-induced mitochondrial damage and examined melatonin's ameliorative potential in vitro. We validated melatonin's intervention (intraperitoneal, 10 mg/kg/d) in C57BL/6 J mice exposed to 250 mg/kg/d of PS-NPs for 28 days. RESULTS: In our in vitro experiments, we observed PS-NP accumulation in cells, including mitochondria, leading to cell toxicity and reduced viability. Notably, antioxidant treatment failed to fully rescue viability, suggesting reactive oxygen species (ROS)-independent cytotoxicity. PS-NPs caused significant mitochondrial damage, characterized by altered morphology, reduced mitochondrial membrane potential, and decreased ATP production. Subsequent investigations pointed to PS-NP-induced disruption of mitochondrial respiration, potentially through interference with complex I (CI), a concept supported by molecular docking studies highlighting the influence of PS-NPs on CI. Rescue experiments using an AMPK pathway inhibitor (compound C) and an autophagy inhibitor (3-methyladenine) revealed that excessive mitophagy was induced through AMPK/ULK1 pathway activation, worsening mitochondrial damage and subsequent cell death in differentiated SH-SY5Y cells. Notably, we identified melatonin as a potential protective agent, capable of alleviating PS-NP-induced mitochondrial dysfunction. Lastly, our in vivo experiments demonstrated that melatonin could mitigate dopaminergic neuron loss and motor impairments by restoring mitophagy regulation in mice. CONCLUSIONS: Our study demonstrated that PS-NPs disrupt mitochondrial function by affecting CI, leading to excessive mitophagy through the AMPK/ULK1 pathway, causing dopaminergic neuron death. Melatonin can counteract PS-NP-induced mitochondrial dysfunction and motor impairments by regulating mitochondrial autophagy. These findings offer novel insights into the MNP-induced PD-like neurodegenerative mechanisms, and highlight melatonin's protective potential in mitigating the MNP's environmental risk.


Assuntos
Melatonina , Neuroblastoma , Humanos , Camundongos , Animais , Mitofagia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Poliestirenos/metabolismo , Microplásticos , Neurônios Dopaminérgicos/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Simulação de Acoplamento Molecular , Plásticos , Camundongos Endogâmicos C57BL , Neuroblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia
4.
Semin Immunol ; 70: 101844, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778179

RESUMO

Sepsis remains one of the most common and lethal conditions globally. Currently, no proposed target specific to sepsis improves survival in clinical trials. Thus, an in-depth understanding of the pathogenesis of sepsis is needed to propel the discovery of effective treatment. Recently attention to sepsis has intensified because of a growing recognition of a non-canonical inflammasome-triggered lytic mode of cell death termed pyroptosis upon sensing cytosolic lipopolysaccharide (LPS). Although the consequences of activation of the canonical and non-canonical inflammasome are similar, the non-canonical inflammasome formation requires caspase-4/5/11, which enzymatically cleave the pore-forming protein gasdermin D (GSDMD) and thereby cause pyroptosis. The non-canonical inflammasome assembly triggers such inflammatory cell death by itself; or leverages a secondary activation of the canonical NLRP3 inflammasome pathway. Excessive cell death induced by oligomerization of GSDMD and NINJ1 leads to cytokine release and massive tissue damage, facilitating devastating consequences and death. This review summarized the updated mechanisms that initiate and regulate non-canonical inflammasome activation and pyroptosis and highlighted various endogenous or synthetic molecules as potential therapeutic targets for treating sepsis.


Assuntos
Sepse , Choque Séptico , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspases/metabolismo , Caspases/farmacologia , Fatores de Crescimento Neural/farmacologia , Moléculas de Adesão Celular Neuronais/farmacologia
5.
Biomarkers ; 28(6): 555-561, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37552125

RESUMO

INTRODUCTION: Breast cancer is a leading cause of cancer death in women worldwide, and early detection is crucial for effective treatment. Mitochondrial dysfunction has been linked to cancer development and progression. Humanin, a mitochondrial-derived peptide, has been shown to have cytoprotective effects and may be involved in breast cancer development. In this study, we aimed to investigate the potential of humanin as a biomarker for breast cancer. METHODS: We recruited 45 female patients diagnosed with primary invasive ductal breast cancer and 45 healthy volunteers. Serum humanin levels were measured using ELISA, and other cancer markers were measured using an Advia Centaur Immunology Analyser. RESULTS: Our results showed that serum humanin levels were significantly higher in breast cancer patients than in healthy controls (p = 0.008). ROC curve analysis indicated that humanin could effectively discriminate between patients and healthy individuals, with a sensitivity of 62.5% and a specificity of 77.5%. CONCLUSION: This suggests that humanin may be a potential new biomarker for breast cancer screening and early detection. Further research is needed to fully understand the relationship between humanin and breast cancer and to develop new diagnostic and therapeutic strategies.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Mitocôndrias , Biomarcadores
6.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569774

RESUMO

The evidence sustaining the regenerative properties of mesenchymal stem cells' (MSCs) secretome has prompted a paradigm change, where MSCs have shifted from being considered direct contributors to tissue regeneration toward being seen as cell factories for producing biotech medicines. We have previously designed a method to prime MSCs towards osteogenic differentiation by silencing the Wnt/ß-Catenin inhibitor Sfpr1. This approach produces a significant increase in bone formation in osteoporotic mice. In this current work, we set to investigate the contribution of the secretome from the MSCs where Sfrp1 has been silenced, to the positive effect seen on bone regeneration in vivo. The conditioned media (CM) of the murine MSCs line C3H10T1/2, where Sfrp1 has been transiently silenced (CM-Sfrp1), was found to induce, in vitro, an increase in the osteogenic differentiation of this same cell line, as well as a decrease of the expression of the Wnt inhibitor Dkk1 in murine osteocytes ex vivo. A reduction in the RANKL/OPG ratio was also detected ex vivo, suggesting a negative effect of CM-Sfrp1 on osteoclastogenesis. Moreover, this CM significantly increases the mineralization of human primary MSCs isolated from osteoportotic patients in vitro. Proteomic analysis identified enrichment of proteins involved in osteogenesis within the soluble and vesicular fractions of this secretome. Altogether, we demonstrate the pro-osteogenic potential of the secretome of MSCs primmed in this fashion, suggesting that this is a valid approach to enhance the osteo-regenerative properties of MSCs' secretome.


Assuntos
Osteogênese , Proteômica , Humanos , Animais , Camundongos , Osteogênese/genética , Secretoma , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Diferenciação Celular/genética
7.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108830

RESUMO

One of the main inducers of autophagy-dependent self-cannibalism, called ULK1, is tightly regulated by the two sensor molecules of nutrient conditions and energy status, known as mTOR and AMPK kinases, respectively. Recently, we developed a freely available mathematical model to explore the oscillatory characteristic of the AMPK-mTOR-ULK1 regulatory triangle. Here, we introduce a systems biology analysis to explain in detail the dynamical features of the essential negative and double-negative feedback loops and also the periodic repeat of autophagy induction upon cellular stress. We propose an additional regulatory molecule in the autophagy control network that delays some of AMPK's effect on the system, making the model output more consistent with experimental results. Furthermore, a network analysis on AutophagyNet was carried out to identify which proteins could be the proposed regulatory components in the system. These regulatory proteins should satisfy the following rules: (1) they are induced by AMPK; (2) they promote ULK1; (3) they down-regulate mTOR upon cellular stress. We have found 16 such regulatory components that have been experimentally proven to satisfy at least two of the given rules. Identifying such critical regulators of autophagy induction could support anti-cancer- and ageing-related therapeutic efforts.


Assuntos
Proteínas Quinases Ativadas por AMP , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Biologia de Sistemas , Serina-Treonina Quinases TOR/metabolismo , Autofagia
8.
Biochem Biophys Res Commun ; 655: 138-144, 2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-36934589

RESUMO

Drug resistance is one of the most important obstacles in effective cancer therapy triggered through various mechanisms. One of these mechanisms is caused by the upregulation of Inhibitor of Apoptosis Proteins (IAPs). IAPs, inhibit apoptosis through direct and/or indirect caspase inhibition, which themselves are antagonized by an endogenous protein called Second Mitochondrial-derived Activator of Caspases, Smac/Diablo, mediated by the presence of a tetrapeptide IAP binding motif at its N-terminus. Accordingly, Smac-based peptides are under intense investigation as anti-cancer drugs and have reached Phase 2 clinical trials, although, Smac based peptides or mimetics alone have not been effective as anti-cancer agents. On the other hand, KLA peptide has shown major toxicity against cancer cells through the induction of apoptosis. Consequently, we designed an anti-cancer chimera by fusing an octa-peptide from the N-terminus of mature Smac protein to a modified proapoptotic KLA peptide (KLAKLCKKLAKLCK) to be called Smac-KLA. This chimera, therefore, possesses both proapoptotic and anti-IAP activities. In addition, we dimerized this chimera via intermolecular disulfide bonds in order to enhance their cellular permeability. Both the Smac-KLA monomeric and dimeric peptides exhibited cytotoxic activity against both MCF-7 and MDA-MB231 breast cancer cell lines at low micromolar concentrations. Importantly, the dimerization of the chimeras enhanced their potency 2-4- fold due to higher cellular uptake.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Caspase 3/metabolismo , Caspases/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Células MCF-7 , Proteínas Mitocondriais/metabolismo , Peptídeos/química
9.
Transpl Immunol ; 77: 101799, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842565

RESUMO

BACKGROUND: Acute lung injury (ALI) is a severe inflammatory disease with high morbidity and mortality in patients and lung transplant recipients. Tumor necrosis factor-α-induced protein 8-like 3 (TIPE3) is one of the members of the TIPE family. While TIPE2 has been demonstrated to be protective against lipopolysaccharide (LPS)-induced ALI, the role of TIPE3 in ALI is currently unidentified. METHODS: To examine the role of TIPE3 in ALI, we pretreated C57BL/6 mice with control or TIPE3-lentivirus in LPS-induced ALI models. The C57BL/6 mice were randomly divided into four groups: control group; ALI-induced group; ALI-induced group with control lentivirus; and ALI-induced group with TIPE3-lentivirus. Additionally, RAW 264.7 cells were used to validate the role and molecular mechanism of TIPE3 signaling in vitro. RESULTS: An increased expression of TIPE3 reduced lung histopathological damage in ALI-affected mice. ALI-affected mice treated with TIPE3-lentivirus exhibited reduced lung microvascular permeability, myeloperoxidase (MPO) activity, neutrophil buildup, and inflammation response. Additionally, over-expression of TIPE3 significantly inhibited NF-κB activation and promoted the activation of Liver X receptors alpha (LXRα). In LPS-treated RAW264.7 cells, enforced TIPE3 expression produced anti-inflammatory effects, whereas the LXR inhibitor geranylgeranyl pyrophosphate (GGPP) reversed these effects. CONCLUSIONS: TIPE3 protected against LPS-induced ALI by regulating the LXRα/NF-κB signaling pathway. These results suggest that TIPE3 might provide a novel insight into the prevention of ALI.


Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Pulmão/patologia , Proteínas de Transporte , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia
10.
Pharm Biol ; 61(1): 271-280, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36655371

RESUMO

CONTEXT: Therapeutic effects of Qiangjing tablets (QJT) on sperm vitality and asthenozoospermia (AZS) have been confirmed. However, the mechanism of action remains unclear. OBJECTIVE: This study investigates the effects of QJT on AZS and the underlying mechanism of action. MATERIALS AND METHODS: Sixty Sprague-Dawley rats were randomly divided into six groups: Control, ORN (ornidazole; 200 mg/kg), ORN + QJT-low (0.17 g/mL), ORN + QJT-middle (0.33 g/mL), ORN + QJT-high (0.67 g/mL), and ORN + QJT + Radicicol (0.67 g/mL QJT and 20 mg/kg radicicol) groups. Pathological evaluation and analysis of mitophagy were conducted by H&E staining and transmission electron microscopy, respectively. Reactive oxygen species were detected by flow cytometry. Protein expression was determined by Western blotting. RESULTS: QJT significantly improved ORN-treated sperm motility and kinematic parameters, as well as the pathological symptoms of testicular and epididymal tissues. In particular, QJT mitigated impaired mitochondrial morphology, and increased the PHB, Beclin-1, LC3-II protein, and ROS levels (p < 0.05), and reduced the protein expression levels of LC3-I and p62 (p < 0.05). Mechanistically, QJT antagonized the downregulation of SCF and Parkin protein levels (p < 0.05). Furthermore, QJT significantly increased the protein expressions levels of LKB1, AMPKα, p-AMPKα, ULK1 and p-ULK1 (p < 0.05). The ameliorative effect of QJT on pathological manifestations, mitochondrial morphology, and the expressions of mitophagy and mitochondrial ubiquitination-related proteins was counteracted by radicicol. DISCUSSION AND CONCLUSIONS: QJT improved AZS via mitochondrial ubiquitination and mitophagy mediated by the LKB1/AMPK/ULK1 signaling pathway. Our study provides a theoretical basis for the treatment of AZS and male infertility.


Assuntos
Astenozoospermia , Medicamentos de Ervas Chinesas , Animais , Masculino , Ratos , Proteínas Quinases Ativadas por AMP , Astenozoospermia/tratamento farmacológico , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Medicamentos de Ervas Chinesas/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico , Mitofagia , Ratos Sprague-Dawley , Sêmen , Motilidade dos Espermatozoides , Comprimidos/uso terapêutico , Ubiquitinação
11.
J Neurotrauma ; 40(7-8): 742-757, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35920115

RESUMO

Abstract Pyroptosis is considered one of a critical factor in the recovery of neurological function following traumatic brain injury. Brain injury activates a molecular signaling cascade associated with pyroptosis and inflammation, including NLRP3, inflammatory cytokines, caspase-1, gasdermin D (GSDMD), and other pyroptosis-related proteins. In this study, we explored the neuroprotective effects of LDC7559, a GSDMD inhibitor. Briefly, LDC7559, siRNA-GSDMD (si-GSDMD), or equal solvent was administrated to mice with a lipopolysaccharide + nigericin (LPS + Nig) model in vitro or with controlled cortical impact brain injury. The findings revealed that inflammation and pyroptosis levels were decreased by LDC7559 or si-GSDMD treatment both in vitro and in vivo. Immunofluorescence staining, brain water content, hematoxylin and eosin staining, and behavioral investigations suggested that LDC7559 or si-GSDMD inhibited microglial proliferation, ameliorated cerebral edema, reduced brain tissue loss, and promoted brain function recovery. Taken together, LDC7559 may inhibit pyroptosis and reduce inflammation by inhibiting GSDMD, thereby promoting the recovery of neurological function.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Fármacos Neuroprotetores , Camundongos , Animais , Microglia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Fármacos Neuroprotetores/farmacologia , Piroptose , Inflamação/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas/metabolismo
12.
Phytother Res ; 37(3): 781-797, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36479746

RESUMO

Thymoquinone (TQ) has been proved to exert wide-ranging pharmacological activities, with anti-inflammatory, antioxidant, anticonvulsant, antimicrobial, anti-tumor, and antidiabetic properties. In this study, we investigated the beneficial effects of TQ on a high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) in C57BL/6 N mice in vivo and free fatty acid (FFA)-induced human hepatocellular carcinoma HepG2 cells in vitro. Further, the underlying mechanisms of TQ to promote hepatic autophagy were also discovered. Data showed that TQ caused (p < 0.01) body weight reduction, improved glucose homeostasis, alleviated hepatosteatosis, and decreased hepatic lipid accumulation related to the induction of autophagy in HFD-fed mice. In vitro, TQ obviously increased (p < 0.01) autophagic flux in FFA-induced HepG2 cells and consequently reduced the lipid accumulation in combination with activation of AMPK/mTOR/ULK1 signaling pathways. Moreover, pharmacological inhibition of the AMPK pathway by addition with AMPK inhibitor Compound C (CC) or silence of ULK1 by transfection with siRNA(ULK1) into HepG2 cells reversed these beneficial effects of TQ on triggering hepatic autophagy and reducing lipid accumulation (p < 0.01). Taken together, these results suggested that TQ alleviated hepatic lipid accumulation by triggering autophagy through the AMPK/mTOR/ULK1-dependent signaling pathway. Our study supports a potential role for TQ in ameliorating NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Fígado , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Lipídeos , Dieta Hiperlipídica , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia
13.
Peptides ; 160: 170917, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36442698

RESUMO

Myocardial infarction is a predominant cause of cardiovascular diseases with high incidence and death rate worldwide. Although growing evidence has suggested that IMD has significant protective influences on the cardiovascular system, the molecular regulatory mechanism of IMD in hypoxia-induced injury caused by myocardial infarction is urgent to be elucidated. In the present study, we found hypoxia led to a noteworthy enhancement in IMD expression and IMD alleviated hypoxia-induced myocardial injury of NRCMs. Furthermore, IMD was proved to inhibit hypoxia-induced injury by regulating MALAT1. Our findings suggested MALAT1 positively regulated the mRNA and protein expression level of ULK1 and hypoxia induced autophagy of NRCMs. MALAT1 stimulated autophagy to block hypoxia-induced cell injury in NRCMs via upregulation of ULK1 expression. Autophagy suppression abolished the protective capability of IMD overexpression against hypoxia-induced myocardial injury in NRCMs. In a word, our study shed light on the central mechanism of IMD in preventing hypoxia-induced injury caused by myocardial infarction. We confirmed IMD induced autophagy and attenuated hypoxia-induced injury in cardiomyocytes via MALAT1/ULK1, which may contribute to designing effective therapeutic approaches of myocardial infarction.


Assuntos
Traumatismos Cardíacos , Infarto do Miocárdio , RNA Longo não Codificante , Apoptose , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais
14.
Clin Appl Thromb Hemost ; 28: 10760296221119458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523143

RESUMO

BACKGROUND: The aberrantly increased proliferation and migration of vascular smooth muscle cells (VSMCs) was critically associated with atherosclerosis (AS) progression. MiR-197-3p has been confirmed to regulate various biological processes, such as tumorigenesis; however, whether miR-197-3p is involved with the pathological development of AS remains largely unknown. METHODS: The serum levels of miR-197-3p in AS patients and healthy donors were determined by polymerase chain reaction (PCR) assay. The transfection efficacies of miR-197-3p mimic or inhibitor in VSMCs were evaluated by PCR assay. The effects of miR-197-3p on VSMC proliferation and migration were determined by EdU cell proliferation and Traswell migration assays. Western blotting was conducted to evaluate the effect of miR-197-3p on WDR5 expression in VSMCs. RESULTS: In the present study, we found that the expression of miR-197-3p was decreased in the serum of AS patients compared to healthy donors. Overexpression of miR-197-3p inhibited the proliferation and migration of VSMCs, while silencing miR-197-3p showed opposite effects. Mechanistical study revealed that WD Repeat Domain 5 (WDR5) was a target of miR-197-3p. Moreover, miR-197-3p was downregulated in VSMCs upon IL6 treatment and inhibited IL6-induced proliferation and migration in VSMCs. CONCLUSIONS: These findings indicate that miR-197-3p could serve as a promising diagnostic marker for AS and that targeting IL6/miR-197-3p/WDR5 axis might be a potential approach to treat AS.


Assuntos
Aterosclerose , MicroRNAs , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Movimento Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Interleucina-6/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Proliferação de Células , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia
15.
BMC Neurosci ; 23(1): 63, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357913

RESUMO

BACKGROUND: Retinal ganglion cells (RGCs) are important retinal neurons that connect visual receptors to the brain, and lysine-specific demethylase 1 (LSD1) is implicated in the development of RGCs. This study expounded the mechanism of LSD1 in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced pyroptosis of RGCs. METHODS: Mouse RGCs underwent OGD/R exposure, and then RGC viability was examined using the cell counting kit-8 method. The mRNA levels of Caspase 1, the protein levels of NOD-like receptor family pyrin domain-containing 3 (NLRP3), N-terminal fragment of gasdermin D (GSDMD-N), and cleaved-Caspase1, and the concentrations of interleukin (IL)-1ß and IL-18 were respectively examined. Subsequently, LSD1 expression was intervened to explore the underlying effect of LSD1 on OGD/R-induced pyroptosis of RGCs. Afterwards, the enrichments of LSD1 and histone H3 lysine 4 methylation (H3K4me) 1/2 on the microRNA (miR)-21-5p promoter were determined using chromatin-immunoprecipitation assay. And the binding interaction between miR-21-5p and NLRP12 was detected using dual-luciferase and RNA pull-down assays. Finally, the effects of miR-21-5p/NLRP12 on LSD1-mediated pyroptosis of RGCs were verified through functional rescue experiments. RESULTS: OGD/R treatment increased pyroptosis of RGCs and LSD1 expression. Silencing LSD1 declined levels of Caspase 1 mRNA, NLRP3, GSDMD-N, cleaved-Caspase1, IL-1ß, and IL-18 and limited pyroptosis of OGD/R-treated RGCs. Mechanically, LSD1 suppressed miR-21-5p expression via demethylation of H3K4me2 on the miR-21-5p promoter to hamper the binding of miR-21-5p to NLRP12, and thereby increased NLRP12 expression. Silencing miR-21-5p or overexpressing NLRP12 facilitated OGD/R-induced pyroptosis of RGCs. CONCLUSION: LSD1-mediated demethylation of H3K4me2 decreased miR-21-5p expression to increase NLRP12 expression, promoting pyroptosis of OGD/R-treated RGCs.


Assuntos
MicroRNAs , Piroptose , Camundongos , Animais , Piroptose/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Caspase 1/metabolismo , Caspase 1/farmacologia , Glucose , Células Ganglionares da Retina/metabolismo , Oxigênio , Lisina , Linhagem Celular , MicroRNAs/genética , Histona Desmetilases/farmacologia , RNA Mensageiro , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia
16.
Invest New Drugs ; 40(6): 1244-1253, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306030

RESUMO

The endoplasmic reticulum (ER) is a critical organelle that preserves the protein homeostasis of cells. Under various stress conditions, cells evolve a degree of capacity to maintain ER proteostasis, which is usually augmented in tumor cells, including colorectal cancer (CRC) cells, to bolster their survival and resistance to apoptosis. Bortezomib (BTZ) is a promising drug used in CRC treatment; however, its main limitation result from drug resistance. Here, we identified the role of tripartite motif-containing protein 59 (TRIM59)-a protein localized on the ER membrane- in the prevention of BTZ-mediated CRC killing. Depletion of TRIM59 is associated with the enhancement of ER stress and a remarkable increase in unfolded protein response (UPR) signaling. Besides, TRIM59 strengthens ER-associated degradation (ERAD) and alleviates the generation of ROS. Of note, TRIM59 knockdown synergizes with the anti-cancer effect of BTZ both in vitro and in vivo. Our findings revealed a role for TRIM59 in the ER by guarding ER proteostasis and represents a novel therapeutic target of CRC.


Assuntos
Neoplasias Colorretais , Proteostase , Humanos , Bortezomib/farmacologia , Retículo Endoplasmático/metabolismo , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático , Apoptose , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia
17.
Microbiol Spectr ; 10(6): e0155722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314949

RESUMO

Increasing evidence indicates that interferon alpha (IFN-α) therapy is an effective treatment option for a subgroup of patients with chronic hepatitis B virus (HBV) infection. It has been confirmed that interferon-induced protein with tetratricopeptide repeats 3 (IFIT3), a member of the interferon-stimulated genes (ISGs), could inhibit the replication of various viruses. However, its effect on HBV replication is unclear. The present study sought to explore the role and mechanism of IFIT3 in IFN-α antiviral activities against HBV. IFIT3 mRNA levels in the peripheral blood of 108 treatment-naive patients and 70 healthy controls were analyzed first. The effect of IFIT3 on the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway under the dual intervention of IFN-α and HBV was also explored in vitro. Treatment-naive individuals exhibited elevated levels of IFIT3 mRNA compared to the controls (P < 0.0001). Mechanistically, the knockdown of IFIT3 inhibited the phosphorylation of signal transducer and activator of transcription 2 (STAT2), whereas the overexpression of IFIT3 produced the opposite effect in vitro. Meanwhile, the overexpression of IFIT3 enhanced the expression of IFN-α-triggered ISGs, including myxovirus resistance A (MxA), 2'-5'-oligoadenylate synthetase 1 (OAS1), and double-stranded RNA-activated protein kinase (PKR), while a weaker induction of IFN-α-triggered ISGs was observed in ruxolitinib-treated cells. After decreasing IFIT3 expression by validated small hairpin RNAs (shRNAs), the levels of hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), and HBV DNA secreted by HepG2 cells transiently transfected with the pHBV1.2 plasmid were increased. Our findings suggest that IFIT3 works in a STAT2-dependent manner to promote the antiviral effect of IFN-α through the JAK-STAT pathway in HBV infection in both human hepatocytes and hepatocarcinoma cells. IMPORTANCE Our study contributes new insights into the understanding of the functions and roles of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3), which is one of the interferon-stimulated genes induced by hepatitis B virus infection in human hepatocytes and hepatocarcinoma cells, and may help to identify targeted genes promoting the efficacy of interferon alpha.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Antígenos de Superfície da Hepatite B , RNA Mensageiro , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia
18.
Mol Cancer Ther ; 21(12): 1862-1874, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36198031

RESUMO

Low-grade serous ovarian cancer (LGSOC) is a rare subtype of epithelial ovarian cancer with high fatality rates in advanced stages due to its chemoresistant properties. LGSOC is characterized by activation of MAPK signaling, and recent clinical trials indicate that the MEK inhibitor (MEKi) trametinib may be a good treatment option for a subset of patients. Understanding MEKi-resistance mechanisms and subsequent identification of rational drug combinations to suppress resistance may greatly improve LGSOC treatment strategies. Both gain-of-function and loss-of-function CRISPR-Cas9 genome-wide libraries were used to screen LGSOC cell lines to identify genes that modulate the response to MEKi. Overexpression of MAML2 and loss of MAP3K1 were identified, both leading to overexpression of the NOTCH target HES1, which has a causal role in this process as its knockdown reversed MEKi resistance. Interestingly, increased HES1 expression was also observed in selected spontaneous trametinib-resistant clones, next to activating MAP2K1 (MEK1) mutations. Subsequent trametinib synthetic lethality screens identified SHOC2 downregulation as being synthetic lethal with MEKis. Targeting SHOC2 with pan-RAF inhibitors (pan-RAFis) in combination with MEKi was effective in parental LGSOC cell lines, in MEKi-resistant derivatives, in primary ascites cultures from patients with LGSOC, and in LGSOC (cell line-derived and patient-derived) xenograft mouse models. We found that the combination of pan-RAFi with MEKi downregulated HES1 levels in trametinib-resistant cells, providing an explanation for the synergy that was observed. Combining MEKis with pan-RAFis may provide a promising treatment strategy for patients with LGSOC, which warrants further clinical validation.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Neoplasias Peritoneais , Feminino , Humanos , Camundongos , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Neoplasias Peritoneais/tratamento farmacológico , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia
19.
Oncol Rep ; 48(6)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36281945

RESUMO

Current investigations suggest that pigment epithelial­derived factor (PEDF) can mediate the progression of non­small cell lung cancer (NSCLC) by regulating autophagy. However, the underlying mechanisms associated with autophagy remain poorly elucidated. The aim of the present study was to investigate the association between the PEDF/adenosine 5'­monophosphate­activated protein kinase (AMPK)/Unc­51 like autophagy­activated kinase 1 (ULK1) pathway and autophagy in NSCLC. Intracellular autophagy was evaluated using indicators such as the expression and activation of microtubule­associated protein light chain 3­I (LC3­I), LC3­II and p62, as well as the distribution and number of autophagosomes observed by confocal microscopy. In addition, the activity and proliferative capacity of NSCLC cells under PEDF overexpression was also examined using Cell Counting Kit­8 and lactate dehydrogenase (LDH) assays, and western blotting (WB) of related proteins. The results revealed that PEDF significantly inhibited NSCLC cell proliferation and viability, and increased LDH release and intercellular adhesion. Furthermore, PEDF suppressed the expression and activation of LC­3 and reduced the number and distribution of autophagosomes. The PEDF­induced inhibition of autophagy exhibited a direct association with the suppressed proliferation capacity and cell viability of NSCLC cells. The results of WB showed that NSCLC cells regulated autophagy through the AMPK/ULK1 signaling pathway. PEDF downregulated the AMPK/ULK1 signaling pathway, and AMPK or ULK1 overexpression markedly reduced the inhibitory effect of PEDF on autophagy. In conclusion, PEDF overexpression significantly inhibited the proliferative capacity and cell viability of NSCLC cells, as PEDF exerted an inhibitory function by regulating autophagy in NSCLC cells. Finally, it was demonstrated that autophagy may be suppressed by inhibiting the AMPK/ULK1 signaling pathway, thereby revealing a mechanism of lung cancer progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Quinases Ativadas por AMP , Regulação para Baixo , Neoplasias Pulmonares/genética , Autofagia , Transdução de Sinais , Proteínas Associadas aos Microtúbulos , Proliferação de Células , Lactato Desidrogenases , Adenosina/farmacologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia
20.
Anticancer Drugs ; 33(9): 871-882, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136987

RESUMO

Exosomal circular RNA was found to mediate cancer chemoresistance. However, whether exosomal circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) was involved in the chemoresistance of prostate cancer (PCa) remains unclear. The docetaxel (DTX) resistance of PCa cells was analyzed by Cell Counting Kit 8 assay. Quantitative real-time PCR was used to measure circSFMBT2, microRNA (miR)-136-5p and tribbles homolog 1 (TRIB1) expression. Cell proliferation, apoptosis, migration and invasion were analyzed by 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, wound-healing assay and transwell assay. RNA interaction was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Protein expression was measured by western blot analysis. Exosomes-extracted from cells were identified by transmission electron microscope, nanoparticles tracking analysis and western blot. Xenograft mice models were constructed to analyze the effect of exosomal circSFMBT2 on the DTX sensitivity of PCa tumors in vivo. CircSFMBT2 was upregulated in DTX-resistant PCa cells, and its knockdown enhanced the DTX sensitivity of DTX-resistant PCa cells by suppressing cell proliferation, migration, invasion and enhancing apoptosis. CircSFMBT2 severed as miR-136-5p sponge to positively regulate TRIB1. The regulation of circSFMBT2 knockdown on the DTX sensitivity of DTX-resistant PCa cells could be reversed by miR-136-5p inhibitor or TRIB1 overexpression. Exosomal circSFMBT2 from DTX-resistant PCa could increase the DTX resistance of normal PCa cells. In addition, exosomal circSFMBT2 also enhanced the DTX resistance of PCa tumors in vivo, and it was highly expressed in the serum of DTX-resistance PCa patients. Exosomal circSFMBT2 enhanced the DTX resistance of PCa by miR-136-5p/TRIB1 axis, indicating that circSFMBT2 might be a potential target for the treatment of PCa chemoresistance.


Assuntos
Neoplasias Encefálicas , MicroRNAs , Neoplasias da Próstata , Animais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Docetaxel/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , RNA Circular/genética , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...